INFORME DE PATOLOGIA Y ANÁLISIS DE VULNERABILIDAD SÍSMICA EDIFICIO CAPS VERBENAL

CONSULTOR: FELIZZOLA INGENIERIA LTDA.

BOGOTA, JUNIO DE 2019

Contenido

IN	ITRODU	CCIÓN Y ANTECEDENTES	8
1	CAP	TULO 1	. 13
	1.1	OBJETIVO	. 13
	1.1.3	l Objetivos específicos	. 13
	1.2	PROPUESTA ARQUITECTONICA ACTUAL	. 13
	1.3	JUSTIFICACION DEL ANALISIS DE VULNERABILIDAD.	. 13
	1.4	SISTEMA ESTRUCTURAL	. 14
	1.5	ALCANCE Y METODOLOGÍA DEL ESTUDIO	. 14
	1.6	REGISTRO FOTOGRÁFICO DE LA EDIFICACIÓN	. 15
	1.6.2	l Fachadas	. 15
	1.6.3	B Espacios interiores	. 16
	1.6.4	l Cubiertas	. 17
	1.6.5	5 Cuartos técnicos	. 18
C	APITULO	2 GEOTECNIA	. 20
	2.1	VERIFICACIÓN DE LA CIMENTACIÓN EXISTENTE	. 20
	2.2	RESUMEN ESTUDIO GEOTECNICO	. 20
	2.3	ALCANCE DEL ESTUDIO geotecnico	. 20
	2.4	ZONIFICACIÓN GEOTÉCNICA	. 20
	2.5	Exploración geotécnica	. 22
	Descrip	oción del perfil del suelo	. 22
	CLASIF	ICACIÓN DE MATERIALES	. 23
	•	Límites de consistencia	. 23
	2.5.2	Auscultación de la cimentación	. 25
C	APITULO) 3 PATOLOGÍA Y LEVANTAMIENTO ESTRUCTURAL	. 26
	3.1	PLAN Y METODOLOGÍA DE TRABAJO PARA EL LEVANTAMIENTO E IDENTIFICACIÓN DE NTOS PRINCIPALES	26
	3.2	PROPIEDADES Y CARACTERÍSTICAS DE LOS MATERIALES DE CONSTRUCCIÓN	
	3.3	LOCALIZACIÓN DEL REFUERZO - LECTURAS CON FERROSCAN	
	3.3.2		
		2 INTERPRETACIÓN SCAN	. 30

	3.3.	3	INTERPRETACIÓN QUICKSCAN	31
	3.3.	4	PROCEDIMIENTO DE ENSAYO	31
	3.3.	5	INTERPRETACIÓN DE IMÁGENES	32
	3.4	Res	ultados de identificación de aceros	35
	3.5	Reg	atas	51
	CERTIF	FICAD	OO DE CALIBRACION	58
	Lesion	es er	ı la estructura	59
	Estado	de l	a edificación	60
	3.6 P	rodu	ctos de reparación	61
	3.7 Er	nsayo	s de compresión de núcleos	62
	3.8 Er	nsayo	s de esclerómetros	. 62
	3.9 Re	esulta	ados de esclerómetro	63
	3.9.	1 Tak	ola de calibración	. 65
	3.10 E	Ensay	os de Carbonatación	65
	3.10).1 Es	timación de la profundidad de carbonatación	67
C	ONCL	USIC	DNES	. 68

LISTA DE IMÁGENES

Imagen 1	PLANTA PRIMER PISO	10
Imagen 2	PLANTA SEGUNDO PISO	10
Imagen 3	CORTES	11
Imagen 4	PLANTA CUBIERTA	11
Imagen 5	PLANTA PRIMER PISO	28
Imagen 6	PLANTA SEGUNDO PISO	28
Imagen 7	PLANTA PRIMER PISO	29
Imagen 8	PLANTA PRIMER PISO	29
Imagen 9	PLANTA SEGUNDO PISO	29
Imagen 10	PLANTA SEGUNDO PISO	30
Imagen 11	PLANTA TERRAZA	30
Imagen 12	FERROSCAN	31
Imagen 13	EPOTOC - 1	61
Imagen 14	VERTICOAT - 1	61
Imagen 15	GRAUTOC	61

LISTA DE FIGURAS

Figura 1 LOCALIZACION CAPS VERBENAL

9

LISTA DE FOTOGRAFIAS

Fotografía 1	FACHADA SUR	15
Fotografía 2	FACHADA ORIENTAL	15
Fotografía 3	FACHADA ORIENTAL	15
Fotografía 4	FACHADA ORIENTAL	15
Fotografía 5	ESPACIOS INTERIORES	16
Fotografía 6	CUBIERTAS	17
Fotografía 7	CUARTOS TECNICOS	18
Fotografía 8	EXPLORACIONES GEOTECNICAS	23
Fotografía 9	CORTE DE LOSA CONTRAPISO Y CABEZAL DE PILOTE	25
Fotografía 10	AUSCULTACION CIMENTACION	25
Fotografía 11	PROFUNDIDAD DE CIMENTACION	25
Fotografía 12	SITIO COSTADO OCCIDENTAL	25
Fotografía 13	CONFORMACIÓN Y ACERO PARA REPARACIÓN DE LOSA	26
Fotografía 14	ESTADO FINAL DE REPARACION DE LOSA	26
Fotografía 15	AUSCULTACION CIMENTACION COSTADO OCCIDENTAL	26
Fotografía 16	IMÁGENES FERROSCAN	32
Fotografía 17.	ACERO LONGITUDINAL CORRUGADO	51
Fotografía 18.	ACERO ½" Y 5/8" EN ACERO CORRUGADO	51
Fotografía 19.	SACA NUCLEO PRIMER PISO	51
Fotografía 20.	ACERO LONGITUDINAL DE 5/8" Y ½" CORRUGADO PRIMER PISO	51
Fotografía 21.	FLEJES EN ACERO 3/8" EN ACERO CORRUGADO Y LONGITUDINAL	
	DE ½" EN COLUMNAS PRIMER PISO	52
Fotografía 22.	FLEJES EN ACERO 3/8" EN ACERO LISO PRIMER PISO	
	CON CALIBRADOR SE MIDE EL DIAMETRO DE BARRA	52
Fotografía 23.	MEDICIÓN DE RECUBRIMIENTO DE ACERO DE 3 CM EN	
	COLUMNA PRIMER PISO	53
Fotografía 24.	ACERO LONGITUDINAL	53
Fotografía 25.	ACERO LONGITUDINAL DE 1/2 " Y 5/8" CORRUGADO COLUMNA	
	PRIMER PISO	54
Fotografía 26.	MEDICIÓN DE RECUBRIMIENTO DE ACERO DE 3 CM EN	
	COLUMNA SEGUNDO PISO	55
Fotografía 27.	MEDICIÓN DE RECUBRIMIENTO DE ACERO DE 3 CM EN	
-	COLUMNA PRIMER PISO	
	ACERO Y ORIFICIO DE NUCLEOS EXTRAIDO	_56
	SACANDO NUCLEOS	57
•	LESIONES DE LA ESTRUCTURA	59
Fotografía 31.	ENSAYOS DE CARBONATACION	66

LISTA DE TABLAS

Tabla 1	EXPLORACION REALIZADA CAPS VERBENAL	22
Tabla 2	CAPACIDAD PORTANTE DE PILOTES	24
Tabla 3	RESULTADOS DE RESISTENCIAS	62
Tabla 4	RESULTADOS DE ESCLEROMETROS	62
Tabla 5	TABLA DE CALIBRACION	65
Tabla 6	ESTIMACION DE LA PROFUNDIDAD DE LA CARBONATACION	67

INTRODUCCIÓN Y ANTECEDENTES

El proyecto consiste en los estudios de lesiones y vulnerabilidad estructural y recomendaciones para el reforzamiento del Caps Verbenal de la localidad Usaquén hacia el norte de Bogotá. Este edificio cuenta con un sistema de pórticos de concreto resistentes a momento con muros divisorios en mampostería y muros secos, según el estudio de suelo que se adelantó, la cimentación está conformada por zapatas corridas sobre pilotes de madera de 0.20 metros de diámetro y 6.0 metros de profundidad.

La edificación actualmente es utilizada para la prestación de servicios de salud, por lo que, dependiendo de los servicios que presten, según la clasificación del título A.2.5.1 del actual reglamento sismo resistente (NSR-10) se considera grupo de uso II y por lo tanto deben presentar un desempeño sísmico superior que garantice la seguridad de los ocupantes del edificio durante y luego de un evento sísmico.

El CAPS VERBENAL se encuentra ubicado en la ciudad de Bogotá en Carrera 18ª N° 187-91 d localidad Usaquén hacia el norte de Bogotá, como se muestra en la Figura 1.

Mediante el geoportal de Bogotá se identificó la zona sísmica correspondiente al predio y

los parámetros sísmicos del mismo.

PLANTAS ARQUITECTONICAS EXISTENTES

Imagen 2. Planta segundo piso

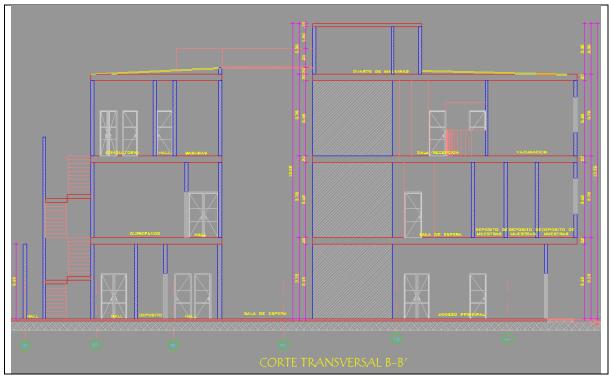


Imagen 3. Cortes

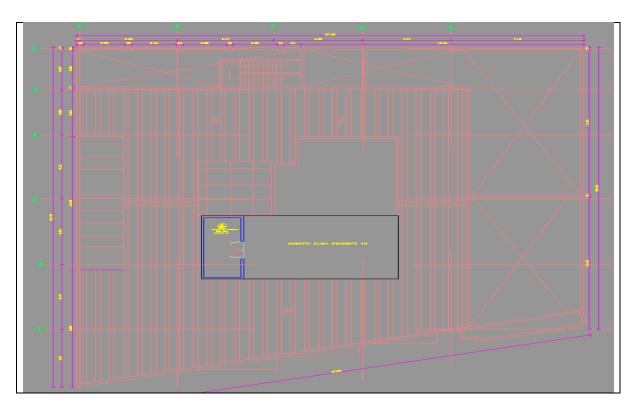


Imagen 4. Planta cubierta

INFORMACIÓN EXISTENTE

Para efectuar la recopilación de la información existente, se contó con la valiosa colaboración del Señor Antonio Linde, la consecución de la información existente demandó un tiempo considerable ya que ésta se encontró fragmentada en diferentes entidades estatales, a continuación se hace una relación de la información obtenida.

• Plano Topográfico de localización

Se encontró plano topográfico de localización del predio

Planos Estructurales

No se obtuvieron planos estructurales de la edificación.

Planos Arquitectónicos y otros

Se obtuvo un plano arquitectónico que incluyen localización, plantas, cortes

Información Respecto de la Construcción e Interventoría

No fue posible la obtención de información acerca de la construcción de la estructura, como bitácoras, ni registros de ensayos a los materiales. Tampoco se encontró información acerca de la interventoría.

1 CAPITULO 1

1.1 OBJETIVO

El objetivo del presente estudio es realizar el análisis de lesiones, evaluar las propiedades mecánicas de los materiales de los elementos que hacen parte del sistema de resistencia sísmica de la edificio, identificar el estado del acero de refuerzo y evaluar la vulnerabilidad sísmica estructural y eventuales requerimientos de rehabilitación o reforzamiento del CAPS VERBENAL, localizado en la ciudad de Bogotá con dirección Carrera 18ª N° 187-91 d localidad Usaquén, con base en las solicitaciones prescritas por el Reglamento Colombiano de Construcción Sismo Resistente NSR10 (ley 400 de 1997 y Decreto 33 de 1998) y sus decretos complementarios, así como la Microzonificación Sísmica de Bogotá, en lo relativo a las medidas de intervención y de disminución de la vulnerabilidad. Para efectos del presente estudio, esta edificación corresponde al grupo de Uso II.

1.1.1 Objetivos específicos.

- Mapeo del acero de refuerzo en algunos elementos estructurales
- Regatas de exploración para verificar estado del acero, diámetro y separación.
- Ensayos no destructivos detección de fisuras, escaneo con Ferroscan.
- Toma de núcleos de concreto para ensayos a compresión.
- Auscultación de la cimentación

1.2 PROPUESTA ARQUITECTONICA ACTUAL

El edificio CAPS VERBENAL actualmente está constituido por tres niveles y una terraza, no posee sótano.

Todas las estructuras son en concreto reforzado y se encuentran moduladas de manera regular con luces entre columnas que varían entre 4.80m y 7.0m de longitud.

El proyecto tiene un área construcción de 1360m2

1.3 JUSTIFICACION DEL ANALISIS DE VULNERABILIDAD.

El CAPS VERBENAL actualmente presenta necesidades de áreas adicionales para cubrir la demanda de servicios, para tal fin elaboro un programa médico arquitectónico llegando a la conclusión que con los espacios actuales no se alcanza a satisfacer este programa; además, se identificó que la construcción actual tiene un área mayor que la licenciada por lo tanto, se requiere legalizar estas áreas adicionales ante curaduría. Dado esta situación y bajo la luz del Reglamento NSR10 se requiere realizar vulnerabilidad sísmica al edificio.

1.4 SISTEMA ESTRUCTURAL

El sistema estructural del CAPS VERBENAL es el de pórticos; compuestos por pórtico espacial, resistente a momentos, esencialmente completo, sin diagonales, que resiste todas las cargas verticales y fuerzas horizontales.

El sistema de entre piso es diafragma rígido.

Las luces se encuentran moduladas de manera regular con luces entre columnas que varían entre 4.80m y 7.0m de longitud, columnas de 30x30 cm y de 60x60cm.

La cimentación es de tipo combinada formada por zapatas corridas unidas con vigas de amarre en ambos sentidos, sobre pilotes de madera de 0.6 metros de diámetro y 6 metros de longitud, según estudio de suelo actual, losa contrapiso de 12cm de espesor.

1.5 ALCANCE Y METODOLOGÍA DEL ESTUDIO

El estudio consiste en la evaluación de la vulnerabilidad sísmica de la edificación y de los elementos no estructurales, con el fin de determinar la alternativa de intervención más adecuada en caso de requerirse, de modo que la edificación cumpla con lo prescrito en el Reglamento NSR10 y sus Decretos Reglamentarios.

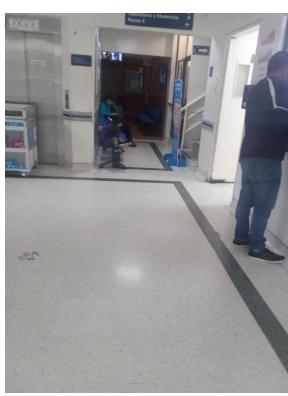
El alcance de los estudios incluye los siguientes aspectos:

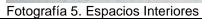
- (a) Realizar el análisis de la vulnerabilidad estructural, con base en la información estructural disponible y levantada como parte del presente estudio, siguiendo la metodología definida en el capítulo A10.
- (b) Evaluación de los índices de sobre-esfuerzos de los elementos estructurales y el de la estructura, con el fin de obtener un diagnóstico general sobre la vulnerabilidad de la misma y de sus elementos estructurales en relación con su capacidad de resistencia (efectos tales como: flexión, cortante, torsión, y flexo-compresión entre otros).
- (c) Evaluación de los índices de flexibilidad de cada uno de los pisos de la estructura y el índice de flexibilidad de la estructura, para determinar la susceptibilidad de la estructura a presentar deflexiones o derivas excesivas, con respecto a las permitidas por el Reglamento NSR10.
- (d) Planteamiento de la alternativa de rehabilitación. Plantear la alternativa de rehabilitación teniendo en cuenta aspectos técnicos, económicos y funcionales para las instalaciones que operan en la edificación, con base en los resultados obtenidos del análisis detallado y de la experiencia adquirida en evaluaciones anteriores y propuestas de rehabilitación.

Las alternativas deben ser acordes con las características de las instalaciones hidráulicas, sanitarias, gas, eléctricas, telefónicas y afines de la edificación.

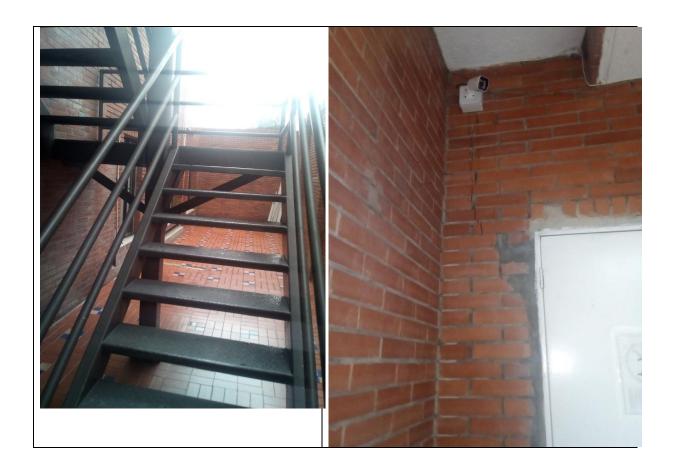
(e) Verificar por medio de modelos elásticos, según sea el caso, consecuente con el cumplimiento de evaluación, el comportamiento de la edificación para cada uno de los escenarios y el cumplimiento de los criterios de aceptabilidad de las normas seleccionadas:

1.6 REGISTRO FOTOGRÁFICO DE LA EDIFICACIÓN


1.6.1 Fachadas



1.6.3 Espacios interiores



1.6.4 Cubiertas

1.6.5 Cuartos técnicos

CAPITULO 2 GEOTECNIA

2.1 VERIFICACIÓN DE LA CIMENTACIÓN EXISTENTE

La cimentación de conformidad al estudio de suelo es de tipo combinada formada por zapatas corridas unidas con vigas de amarre en ambos sentidos, sobre pilotes de madera de 0.6 metros de diámetro y 6 metros de longitud.

Se realizó una auscultación de la cimentación en el costado occidental de la edificación encontrándose a una profundidad de -1.8m un elemento tipo cimiento ancho.

.

2.2 RESUMEN ESTUDIO GEOTECNICO

El proyecto consiste en los estudios, diseños y recomendaciones para el reforzamiento y/o construcción de la estructura de cimentación del CAPS VERBENAL.

Este estudio en particular contempla la ejecución de acciones geotécnicas tales como sondeos, ensayos de laboratorio y evaluación geotécnica de tal forma que se puedan definir las condiciones de resistencia y compresibilidad de la zona de estudio como también su posterior comportamiento al reforzamiento.

2.3 ALCANCE DEL ESTUDIO GEOTECNICO

El estudio comprendió el siguiente alcance:

- Reconocimiento de campo.
- Exploración del subsuelo.
- Interpretación y análisis de los resultados obtenidos.
- Elaboración del informe.

2.4 ZONIFICACIÓN GEOTÉCNICA

De acuerdo con el decreto 523 del 16 de diciembre de 2010, por el cual se adopta la Microzonificación Sísmica de Bogotá D.C., la zona de estudio del CAPS VERBENAL se encuentra en la zona geotécnica **Lacustre A.** En la plataforma del SIRE, publicada por el IDIGER, se determinó la zona de respuesta sísmica del suelo para el Caps de Verbenal. De acuerdo con esto, el proyecto se emplaza en la zona de respuesta sísmica **Lacustre 200**.

Los coeficientes para esta zona geotécnica se presentan a continuación:

Coeficientes sísmicos de diseño zona de estudio según microzonificación Bogotá.

Zona	Fa	F _v	T _C (s)	T _L (s)	A ₀ (g)
Lacustre 200	1.20	3.50	1.87	4	0.18

- a) Coeficiente de amplificación que afecta la aceleración en la zona de periodos cortos F_a = 1.20.
- b) Coeficiente de amplificación que afecta la aceleración en la zona de periodos intermedios $F_{\nu}=3.50.$
- c) Periodo corto $T_c = 1.87$.
- d) Periodo Largo $T_L = 4.0$.
- e) Aceleración horizontal pico efectiva del terreno en superficie (g) $\underline{A_0} = 0.18$.

Adicionalmente a continuación se presentan los coeficientes sísmicos de umbral de daño.

Coeficientes sísmicos de umbral de daño para la zona de estudio según microzonificación Bogotá.

Zona	F _a	F _v	T _{0d} (s)	T _{Cd} (s)	T _{Ld} (s)	A _{0d} (g)
Lacustre 300	1.35	4.75	0.35	1.76	4.0	0.08

- a) Coeficiente de amplificación que afecta la aceleración en la zona de periodos cortos F_a = 1.35.
- b) Coeficiente de amplificación que afecta la aceleración en la zona de periodos intermedios $F_v = 4.75$.
- c) Periodo corto $T_c = 1.76$.
- d) Periodo Largo $T_L = 4.0$.
- e) Aceleración horizontal pico efectiva del terreno en superficie (g) $A_0 = 0.08$.

2.5 EXPLORACIÓN GEOTÉCNICA

A continuación se presenta el cuadro de exploración geotécnica realizada por Ingercivil SAS.

Empresa/ año	Sondeo/ Exploración	Profundidad (m)	Profundidad nivel de agua (m)
Ingercivil SAS - 2019	S1	25	1.5
Ingercivil SAS - 2019	S2	15	1.2

Tabla 1. Exploración realizada en CAPS VERBENAL, Sondeos, tomado del estudio de suelo

Descripción del perfil del suelo

A continuación, se describe el perfil de suelo que se encontró en la zona del proyecto.

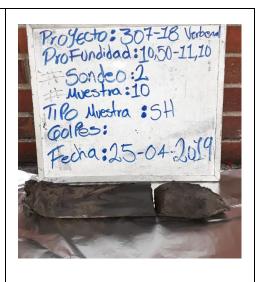
Material 1. Relleno antrópico: La capa más superficial corresponde con una arena limosa con algo de gravas de color marrón claro cómo se puede observar en las siguientes figuras con un espesor promedio de 2.6 m, el material limoso es de baja plasticidad y tiene un peso unitario total de 20 kN/m³.

Material 2. Arcilla de alta plasticidad: Luego del relleno se identifica una capa de arcilla de alta plasticidad de color marrón claro con humedad alta que presenta una consistencia blanda. Este material es predominante a lo largo del perfil estratigráfico.

CLASIFICACIÓN DE MATERIALES

• Límites de consistencia

Según los materiales encontrados en la campaña de exploración, se puede observar en las siguiente imagines que estos obedecen a arcillas y limos (finos) de alta plasticidad, los cuales poseen límites líquidos que varían entre 149 y 287% de humedad, límites plásticos entre 20.5% y 70%. Sabiendo que el contenido de agua se mueve entre 88% y 177.3%, reportándose como materiales con humedad media. A continuación, se presentan las figuras de carta de plasticidad y de contenido de humedad y límites respecto a la profundidad.


Registro Fotográfico. Exploración geotécnica

Fotografía 5 Exploraciones Geotécnicas

	CAPACIDAD PORTANTE PILOTES									
Lp	Su	σ'vo	Qs	Qu Meyerhof	Qu Janbu	Qadm Meyerhof	Qadm Janbu			
(m)	(kN/m²)	(kN/m²)	kN	kN	kN	kN	kN			
0	20.00	0.00	0.00	5.65	3.74	1.88	1.25			
1	20.00	11.54	12.57	18.22	16.67	8.87	8.35			
2	20.00	15.23	25.13	30.79	29.35	15.85	15.37			
3	20.00	18.92	37.70	43.35	42.03	22.83	22.39			
4	20.00	22.61	50.27	55.92	54.71	29.81	29.41			
5	20.00	26.30	62.83	68.49	67.40	36.79	36.43			
6	20.00	29.99	75.40	81.05	80.08	43.77	43.45			

Tabla 2 . Capacidad portante de pilotes, tomado del estudio de suelo

2.5.1 Auscultación de la cimentación

Fotografía 9. Corte de losa contrapiso

Fotografía 10. Corte de losa contrapiso, auscultación cimentación

Fotografía 11. Profundidad de cimentación

Fotografía 12. Sitio costado occidental

Fotografía 13. Conformación y acero para reparación de losa

Fotografía 14. Estado final de reparación de losa

Fotografía 15 Auscultación cimentación costado occidental

CAPITULO 3 PATOLOGÍA Y LEVANTAMIENTO ESTRUCTURAL

3.1 PLAN Y METODOLOGÍA DE TRABAJO PARA EL LEVANTAMIENTO E IDENTIFICACIÓN DE ELEMENTOS PRINCIPALES

Para adelantar el análisis de vulnerabilidad sísmica del Edificio CAPS VERBENAL fue necesario organizar y verificar la información existente referente al dimensionamiento de la estructura, tipos de conexiones y de apoyos, dimensionamiento de elementos estructurales, cargas actuantes, detalles del refuerzo, características y disposición de elementos no estructurales tales como muros divisorios o de fachada y demás información requerida.

Esta información se obtiene en la edificación mediante mediciones directas, inspecciones, estimativos y levantamiento de la estructura existente. Para el efecto se adelantaron varias visitas de inspección al edificio en las cuales se tomaron las secciones de los elementos estructurales.

El procedimiento que se siguió para recopilar la información incluyó las siguientes actividades:

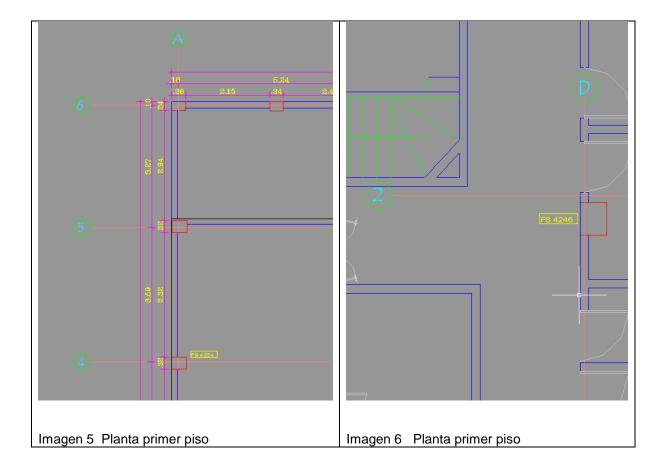
- ♦ Inspección visual y toma de registro fotográfico
- ♦ Tipificación del sistema estructural: se realizó recorrido por la edificación con la finalidad de identificar el sistema de resistencia a cargas horizontales y a cargas verticales.
- ♦ Caracterización geométrica: la caracterización geométrica de la estructura se llevó a cabo inicialmente mediante la consulta de los planos disponibles y posteriormente mediante medición detallada en diferentes zonas del edificio.
- ♦ Caracterización del material: mediante la realización de ensayos destructivos y no destructivos de los materiales utilizados en la construcción se determinaron las propiedades físicas y mecánicas principales y se estableció el estado actual de la estructura.
- ♦ Definición de elementos principales: a partir de los resultados obtenidos en las actividades previas, se estableció la importancia relativa de cada uno de los componentes. Para esto se tuvo en cuenta las dimensiones de los elementos, la carga que soportaban y su importancia estructural relativa.

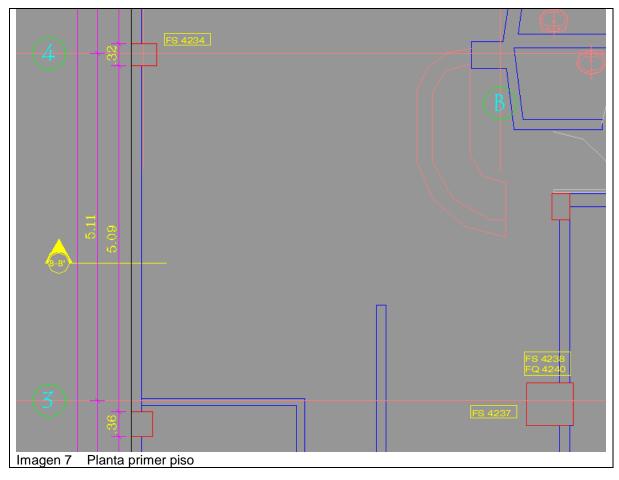
3.2 PROPIEDADES Y CARACTERÍSTICAS DE LOS MATERIALES DE CONSTRUCCIÓN

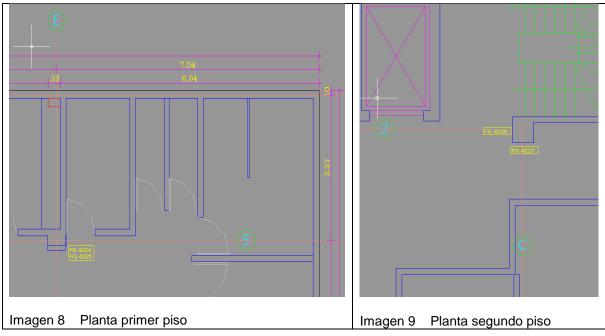
Para complementar la información sobre los materiales de la estructura, se realizaron ensayos de campo y de laboratorio con el fin de estimar sus propiedades mecánicas.

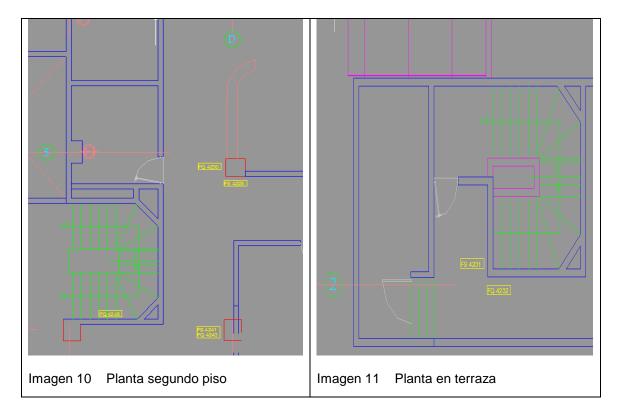
Se realizaron las siguientes actividades:

- ♦ Extracción de núcleos de concreto.
- ♦ Ensayos de compresión simple sobre muestras de concreto recuperadas.
- ♦ Ensayos de esclerómetro en campo.
- ♦ Regatas para identificación de refuerzo.
- ♦ Ensayos de detección de refuerzo mediante Ferroscan.


3.3 LOCALIZACIÓN DEL REFUERZO - LECTURAS CON FERROSCAN


Para conocer la distribución del refuerzo en sitios estratégicos de la estructura en los cuales es inadmisible realizar regatas (ej: nudos del pórtico) se utilizó un Ferroscan. Este equipo es un instrumento electrónico que permite en tiempo real conocer la distribución, diámetros y recubrimientos del acero de refuerzo en una estructura de concreto. Las mediciones de Ferroscan fueron comparadas con la disposición del refuerzo presentada en planos y regatas e indican que existe concordancia entre el refuerzo establecido en el diseño estructural y el utilizado en la construcción de la estructura.


Las regatas consisten en demoler a nivel local el concreto de recubrimiento de un elemento estructural de tal manera que el refuerzo que contiene quede expuesto para su respectiva identificación.


De acuerdo a las regatas realizadas se estableció que el refuerzo principal de los elementos estructurales es corrugado (grado 60), el acero de los estribos es liso y el recubrimiento en la mayoría de los casos se encuentra dentro de los dimensiones establecidas por el NSR-10.

Localización lecturas con ferroscan

El Hilti FerroScan PS 200 es un equipo muy utilizado en proyectos de diagnóstico estructural o en inspecciones no destructivas, los principales usos son:

- Determinación de corrosión en barras de acero o deterioro de recubrimiento de hormigón.
- Evaluación de protección contra fuego de barras de acero
- Verificación de diámetro de barras de acero para una verificación de carga por cambio de uso de la estructura
- Perforación de elementos de hormigón de forma rápida y segura

3.3.1 LIMITANTES

El equipo, por estar basado en un campo magnético, tiene la limitante de distancia, cobertura y profundidad mínima entre refuerzos, motivo por el cual es conveniente verificar en sitio mediante apiques o en planos, para mejorar el resultado, utilizando la opción de calibración del equipo. El equipo esta calibrado para determinar diámetros convencionales a partir del refuerzo #3.

3.3.2 INTERPRETACIÓN SCAN

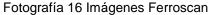
La imagen indica la localización del refuerzo y sobre esta se toman muestras marcadas con números consecutivos los cuales describen la posición, cobertura, posible diámetro, orientación y validez de la muestra, generalmente en la imagen se indican verticalmente los refuerzos que van en el sentido longitudinal del elemento estudiado.

3.3.3 INTERPRETACIÓN QUICKSCAN

La imagen muestra una serie de barras que indican la localización del refuerzo en el eje horizontal y su profundidad en el vertical. El resultado es mejor cuando se conoce el diámetro. En la tabla se resumen los datos: cantidades, localización, distancia y profundidad. Basados en la continuación de la profundidad se pueden determinar los elementos fuera del rango, determinándolos como "basura"

3.3.4 PROCEDIMIENTO DE ENSAYO

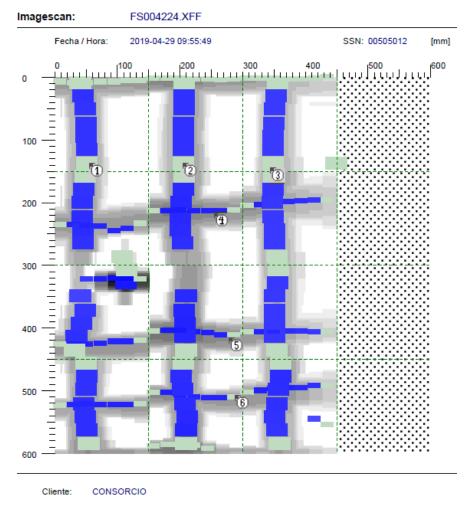
- Determinación de la superficie de ensayo.
- Ubicación de la cuadricula de lectura.
- Toma de registro con el dispositivo portátil PS-200.


• Transmisión de información al equipo y revisión de imagen.

3.3.5 INTERPRETACIÓN DE IMÁGENES

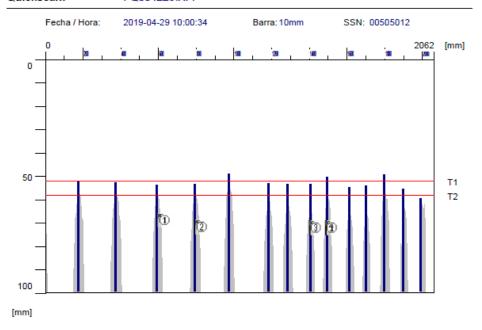
- En cada image existe una cobertura de 0.60cm2.
- Cada uno de los registros indica nivel, elementos estructural y eje estructural.
- En cada registro se presenta con dos paginas en la primera la imagen con unos marcadores numerados y en la segunda la cordenada del marcador dentro de la imagen y el tipo de refuerzo encontrado y su posicion frente a la ubicación del elemento estructural.

REGISTRO FOTOGRÁFICO IMÁGENES FEROSCAN



3.4 RESULTADOS DE IDENTIFICACIÓN DE ACEROS

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.40m x0.40m, 1er. PISO COSTADO ORIENTAL EJE ESTRUCTURAL (E-5) EXTRACCION DE NUCLEO.

Imagescan: FS004224.XFF

Marcadox: [mm]		Marcadox: [mm] y		y: [mm]	Comentario:
1	58	138	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7		
2	207	138	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7		
3	347	147	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7		
4	258	219	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m		
5	279	419	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m		
6	290	511	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m		

Quickscan: FQ004225.XFF

Estadística de Quickscan:

 Recubrimiento mínima:
 49 mm
 T1: 52 mm

 Recubrimiento máximo:
 60 mm
 #Barras en T1: 4

 Cobertura media:
 53 mm
 T2: 58 mm

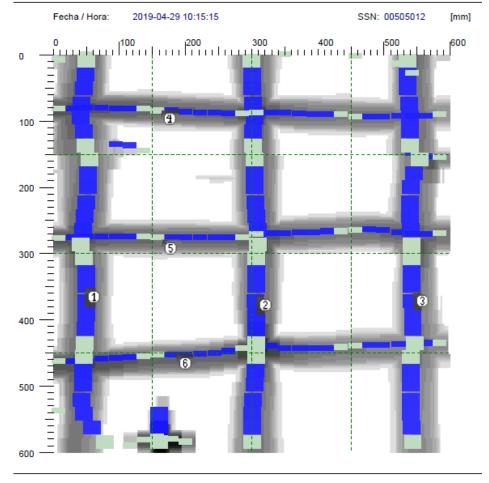
 Desviación estándar:
 3 mm
 #Barras en T2: 13

 Cut-Off:
 100 mm
 T3: 100 mm

 #Barras en el punto de Cut-Off::
 14
 #Barras en T3: 14

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION $0.40 \text{m} \times 0.40 \text{m}$, 1er. PISO COSTADO NORTE EJE ESTRUCTURAL (E-5) EXTRACCION DE NUCLEO.

Quickscan: FQ004225.XFF

Marcadox: [mm]		z: [mm]	Comentario:
1	599	67	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
2	798	69	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
3	1405	70	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
4	1493	70	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m

Imagescan: FS004226.XFF

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION $0.60 \mathrm{m} \times 0.50 \mathrm{m}$, $2 \mathrm{do}$. PISO COSTADO SUR $0.60 \mathrm{m}$ ESCALERAS EJE ESTRUCTURAL (C-2)

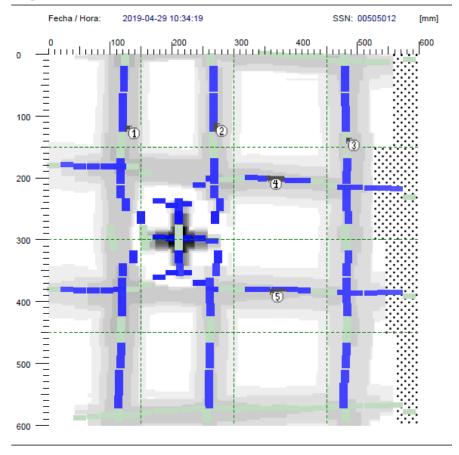
Imagescan: FS004226.XFF

Marcadox: [mm]		y: [mm]	Comentario:
1	51	358	REFUERZO PRINCIPAL LONGITUDINAL D=32mm 2#5
2	311	368	REFUERZO PRINCIPAL LONGITUDINAL D=28mm 1#5+1#4
3	549	363	REFUERZO PRINCIPAL LONGITUDINAL D=32mm 2#5
4	166	85	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
5	167 189	282 456	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Imagescan: FS004227.XFF

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION $0.60 \, \mathrm{m} \times 0.50 \, \mathrm{m}$, 2do. PISO COSTADO ORIENTAL $0.50 \, \mathrm{m}$, ESCALERAS EJE ESTRUCTURAL (C-2)

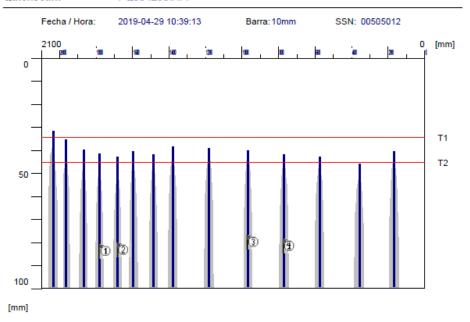
Imagescan: FS004227.XFF

Marc	larcadox: [mm] y: [mm] Co		omentario:	
1	42	159	REFUERZO PRINCIPAL LONGITUDINAL D=32mm 2#5	
2	225	160	REFUERZO PRINCIPAL LONGITUDINAL D=28mm 1#5+1#4	
3	444	144	REFUERZO PRINCIPAL LONGITUDINAL D=32mm 2#5	
4	111	95	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m	
5	112	270	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m	
6	132	444	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m	

magescan: FS004228.XFF

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.40m x 0.40m, 3er. PISO COSTADO ORIENTAL RECEPCION EJE ESTRUCTURAL (D-3)

Imagescan: FS004228.XFF

Marc	rcadox: [mm] y: [mm] Comentario:		Comentario:
1	127	118	REFUERZO PRINCIPAL LONGITUDINAL 1#4
2	270	115	REFUERZO PRINCIPAL LONGITUDINAL 1#4
3	485	137	REFUERZO PRINCIPAL LONGITUDINAL 1#4
4	359	201	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
5	362	384	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Quickscan: FQ004230.XFF

Estadística de Quickscan:

 Recubrimiento mínima:
 32 mm
 T1: 34 mm

 Recubrimiento máximo:
 46 mm
 #Barras en T1: 1

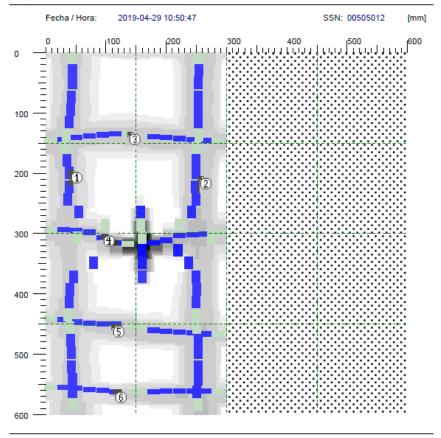
 Cobertura media:
 40 mm
 T2: 45 mm

 Desviación estándar:
 3 mm
 #Barras en T2: 13

 Cut-Off:
 100 mm
 T3: 100 mm

 #Barras en el punto de Cut-Off::
 14
 #Barras en T3: 14

Cliente: CONSORCIO


Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA

Comentario:

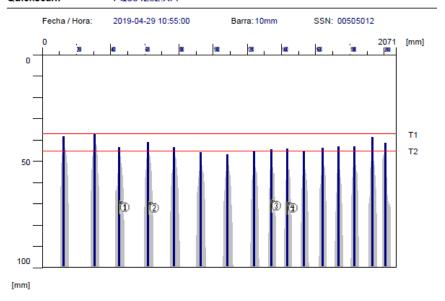
TOMA DE RESGISTRO COLUMNA SECCION $0.40 \,\mathrm{m} \times 0.40 \,\mathrm{m}$, $3 \,\mathrm{er}$. PISO COSTADO SUR RECEPCION EJE ESTRUCTURAL (D-3)

Quickscan: FQ004230.XFF

М	arcadoix: [mm]	z: [mm]	Comentario:
1	1777	81	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/ 10m
2	1681	81	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
3	968	78	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
4	769	79	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.30m x 0.30m, 4to. PISO COSTADO SUR RECEPCION EJE ESTRUCTURAL (C-2)

Imagescan: FS004231.XFF

Marc	Marcadoix: [mm] y: [farcadox: [mm] y: [mm]		Comentario:
1	40	197	REFUERZO PRINCIPAL LONGITUDINAL 1#5		
2	255	208	REFUERZO PRINCIPAL LONGITUDINAL 1#5		
3	137	134	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m		
4	95	304	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m		
5	110	455	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m		
6	114	564	REFLIERZO TRANSVERSAL ESTRIBOS # 3 c/ 10m		

Quickscan: FQ004232.XFF

Estadística de Quickscan:

Recubrimiento mínima: 37 mm Recubrimiento máximo: 47 mm Cobertura media: 43 mm Desviación estándar: 3 mm

Cut-Off: 100 mm

#Barras en el punto de Cut-Off:: 16

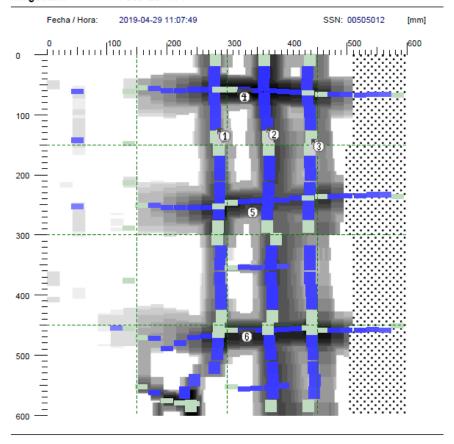
T1: 37 mm #Barras en T1: 1

T2: 45 mm #Barras en T2: 12

T3: 100 mm #Barras en T3: 16

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

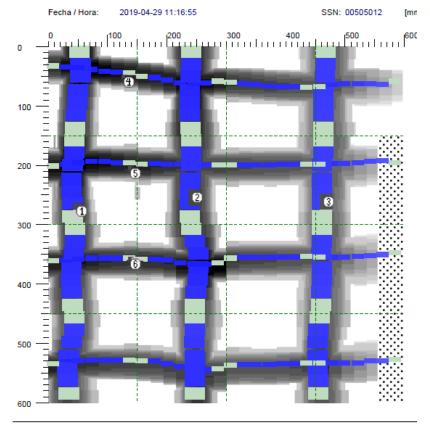
TOMA DE RESGISTRO COLUMNA SECCION 0.30m x 0.30m, 4to. PISO COSTADO ORIENTAL RECEPCION EJE ESTRUCTURAL (C-2)

Quickscan: FQ004232.XFF

Marcadox: [mm]		Marcadoːx: [mm] z: [mm] Comentario:	
1	454	69	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
2	622	70	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
3	1340	69	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
4	1436	70	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m

Imagescan: FS004234.XFF

Cliente: CONSORCIO


Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA

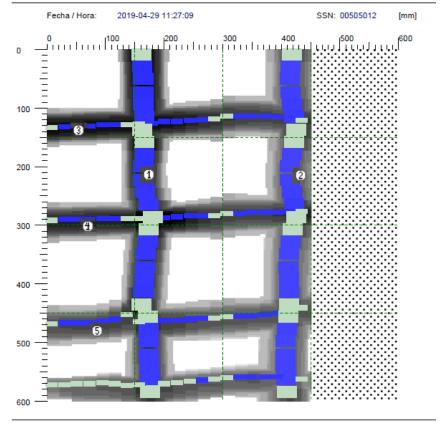
Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.30m, 1er. PISO COSTADO NORTE ESTACION ENFERMERAS, EJE ESTRUCTURAL (A-4)

Imagescan: FS004234.XFF

Marc	adox: [mm]	y: [mm]	Comentario:
1	285	125	REFUERZO PRINCIPAL LONGITUDINAL # 6
2	368	123	REFUERZO PRINCIPAL LONGITUDINAL # 6
3	442	144	REFUERZO PRINCIPAL LONGITUDINAL # 6
4	319	60	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
5	333	253	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
6	323	462	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Cliente: CONSORCIO


Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA

Comentario:

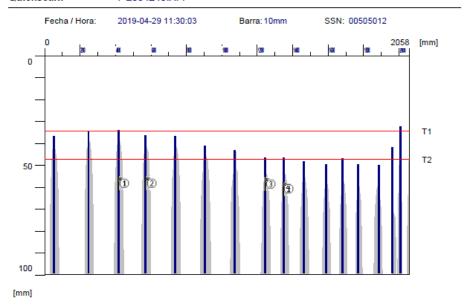
TOMA DE RESGISTRO COLUMNA SECCION 0.50m x0.80m, 1er. PISO COSTADO SUR ESTACION ENFERMERAS EJE ESTRUCTURAL (B-3)

Imagescan: FS004237.XFF

Marcadox: [mm]		y: [mm]	Comentario:
4	44	267	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
1	44		
2	239	245	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
3	462	253	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
4	124	49	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
5	136	204	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
6	135	359	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m

Cliente: CONSORCIO

CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA Lugar:


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.50m x0.80m, 1er. PISO COSTADO OCCIDENTAL 0 .80m ESTACION ENFERMERAS EJE ESTRUCTURAL (B-3)

Imagescan: FS004238.XFF

Marcadoix: [mm]		Marcadoix: [mm]		Marcadoix: [mm] y: [mm]		y: [mm]	Comentario:
_	402		DEFLIERZO PRINCIPAL LONGITURINAL D. 20 4#5 - 4#7				
1	163	204	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7				
2	423	205	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7				
3	42	129	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m				
4	59	293	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m				
5	75	471	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m				

Quickscan: FQ004240.XFF

Estadística de Quickscan:

 Recubrimiento mínima:
 32 mm
 T1: 34 mm

 Recubrimiento máximo:
 50 mm
 #Barras en T1: 2

 Cobertura media:
 42 mm
 T2: 47 mm

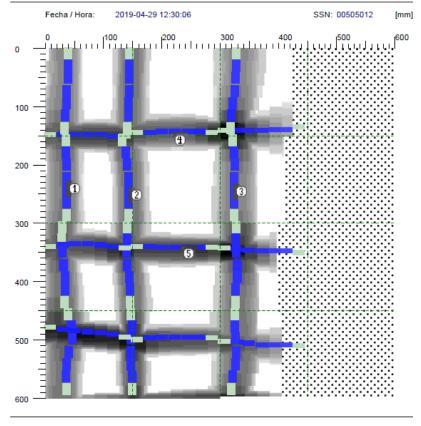
 Desviación estándar:
 6 mm
 #Barras en T2: 12

 Cut-Off:
 100 mm
 T3: 100 mm

 #Barras en el punto de Cut-Off::
 16
 #Barras en T3: 16

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION $0.50 \text{m} \times 0.80 \text{m}$, 1er. PISO COSTADO OCCIDENTAL 0.80 m ESTACION ENFERMERAS EJE ESTRUCTURAL (B-3)

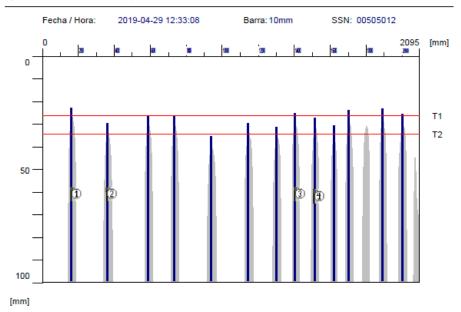
Quickscan: FQ004240.XFF

Marc	Marcadoix: [mm] z: [arcadox: [mm] z: [mm]		Comentario:	
1	417	56	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m			
2	573	56	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m			
3	1247	56	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m			
4	1349	58	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m			

Imagescan: FS004241.XFF

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.40m, 3er. PISO COSTADO SUR CORREDOR EJE ESTRUCTURAL (D-2)

Imagescan: FS004241.XFF

Marc	adox: [mm]	y: [mm]	Comentario:
1	38	232	REFUERZO PRINCIPAL LONGITUDINAL 1#5
2	147	241	REFUERZO PRINCIPAL LONGITUDINAL 1#5
3	326	236	REFUERZO PRINCIPAL LONGITUDINAL 1#5
4	221	148	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
5	236	342	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Quickscan: FQ004243.XFF

Estadística de Quickscan:

 Recubrimiento mínima:
 23 mm
 T1:
 26 mm

 Recubrimiento máximo:
 36 mm
 #Barras en T1:
 6

 Cobertura media:
 27 mm
 T2:
 34 mm

 Desviación estándar:
 4 mm
 #Barras en T2:
 12

 Cut-Off:
 100 mm
 T3:
 100 mm

 #Barras en el punto de Cut-Off::
 13
 #Barras en T3:
 13

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA

Comentario:

TOMA DE RESGISTRO COLUMNA SECCION 0.40m, 3er. PISO COSTADO SUR CORREDOR EJE ESTRUCTURAL (D-2)

Quickscan: FQ004243.XFF

Marcadoix: [mm]		z: [mm]	Comentario:
	450	50	DEFLICITO TRANSVERSAL FOTBIRGO # 2 -/ 20
1	156	58	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
2	354	58	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
3	1402	58	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
4	1511	60	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m

Quickscan: FQ004245.XFF

Estadística de Quickscan:

 Recubrimiento mínima:
 21 mm
 T1: 54 mm

 Recubrimiento máximo:
 94 mm
 #Barras en T1: 3

 Cobertura media:
 59 mm
 T2: 68 mm

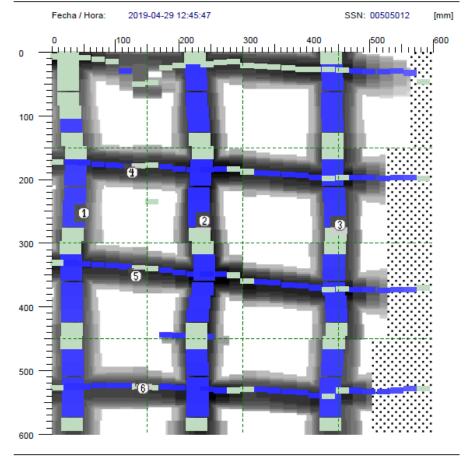
 Desviación estándar:
 18 mm
 #Barras en T2: 9

 Cut-Off:
 100 mm
 T3: 100 mm

 #Barras en el punto de Cut-Off::
 10
 #Barras en T3: 10

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA


Comentario:

TOMA DE RESGISTRO VIGA ESCALERA ALTURA 0.35m, 3er. PISO COSTADO OCCIDENTAL EJE ESTRUCTURAL (2 ENTRE C-D)

Quickscan: FQ004245.XFF

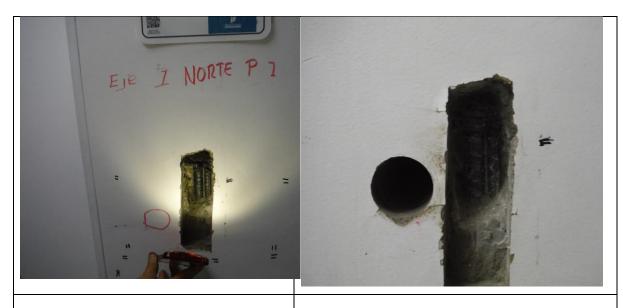
_				
	Marc	adox: [mm]	z: [mm]	Comentario:
	1	418	79	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
	2	315	79	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
	3	200	81	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.10m
	4	819	81	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m
	5	607	80	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.20m

Imagescan: FS004246.XFF

Cliente: CONSORCIO

Lugar: CARRERA 18A # 187-91 Operador: ING. JOHN SAAVEDRA

Comentario:


TOMA DE RESGISTRO COLUMNA SECCION 0.50m, 1er. PISO COSTADO SUR CORREDOR EJE ESTRUCTURAL (D-2)

Imagescan: FS004246.XFF

Marca	adox: [mm]	y: [mm]	Comentario:
1	38	244	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
2	230	255	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
3	442	262	REFUERZO PRINCIPAL LONGITUDINAL D=38mm 1#5+1#7
4	116	179	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
5	122	344	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m
6	133	521	REFUERZO TRANSVERSAL ESTRIBOS # 3 c/.15m

3.5 REGATAS

3.5.1 Primero, segundo y tercer piso

Fotografía 17. Acero longitudinal corrugado

Fotografía 18. Acero ½" y 5/8 pulgadas en acero corrugado

Fotografía 19. Saca núcleo en primer piso

Fotografía 20. acero longitudinal 5/8 pulgadas y ½ corrugado en columna primer piso

Fotografía 21 . Flejes en acero 3/8 pulgadas en acero corrugado y longitudinal de ½ en columna primer piso

Fotografía 22. Flejes en acero 3/8 pulgadas en acero liso columnas primer piso, con calibrador se midió el diámetro de la barra

Fotografía 25. Aceros longitudinales de ½ y 5/8 corrugado columnas primer piso

Fotografía 26 . Medición de recubrimiento de acero de 3cmen columna segundo piso

Fotografía 27. Medición de recubrimiento de acero de 3cm en columna primer piso

Fotografía 28. Aceros y orificio de núcleo extraído

Fotografía 29. Sacando núcleos

CERTIFICADO DE CALIBRACION

Service Certificate

Product:

PS 200 Ferroscan

Serial No. Monitor:

2605021

Serial No. Scanner:

505012

Inspection date:

20/06/2016

1. Specifications

Accuracy of depth of coverage*

(Imagescan with unknown parameters)

Depth 5 mm to 20 mm:

± 3 mm

Depth 20 mm to 140 mm:

(see table)

	20mm	40mm	60mm	80mm	100mm	120mm	140mm
28	±3	±3	±4	±6	±6		
Ø 12	±3	±3	±4	±5	±8	±12	9
Ø 16	±3	±3	24	±θ	18	±12	±14
Ø 20	±3	±3	±4	±6	±8	±12	±14

Determination of diameter

± 1 diameter size

Scanning length

600 mm ± 5 mm

2. Certificate

We hereby certify that the product described has been tested before shipment and compiled with the specifications as stated above (see inspection date).

The test equipment used is traceable to the standard BS1881 chapter 6.4 Method C.
This is established by a Quality Management System in accordance to ISO 9001.

The product can be sent to the Hiti Repair Center for re-service.

We recommend that the tool is checked by the Hill Measuring Service at regular intervals in order to verify its reliability in accordance with standards and legal requirements, but at least once a year.

Location:

TSC BOGOTA

Date:

20/06/2016

Repair Technician

DENNYS BEJARANO

^{*} Factors in particular extreme temperature fluctuations, humidity, shock, drop, etc., can affect the accuracy. Unless otherwise specified, the tool was under standard ambient (WIL-STD-810G) adjusted or calibrated.

LESIONES EN LA ESTRUCTURA

Se realizó recorrido a todos los espacios del caps en busca de posibles lesiones en elementos estructurales y no estructurales, se identificaron fisuras en muros (elementos no estructurales), en acabados de pisos, en muros del sector parqueadero y losas de contrapiso en primer piso costado occidental; lesiones estas que no comprometen la seguridad estructural, al respecto estos muros se deben reparar siguiendo los lineamiento de muros no estructurales contemplados en el Reglamento NSR10.

ESTADO DE LA EDIFICACIÓN

Se evaluó el estado de la edificación basados en la tabla A.10.4-1 del reglamento NSR10

Tabla A.10.4-1 Valores de ϕ_c y ϕ_e

		l diseño y la co stado de la edif	
	Buena	Regular	Mala
$\phi_{c} \circ \phi_{e}$	1.0	0.8	0.6

	Buena	Regular	Mala
Фсофе			0.60

La estructura presenta un estado de construcción mala puesto que la resistencia del concreto (14MPa) de los elementos que hacen parte del sistema de resistencia sísmico no se considera estructural. En general esta edificación se encuentra bien mantenida en cuanto a acabados y no se evidencian daños estructurales que comprometan la estabilidad del edificio; existen lesiones a nivel de elementos no estructurales

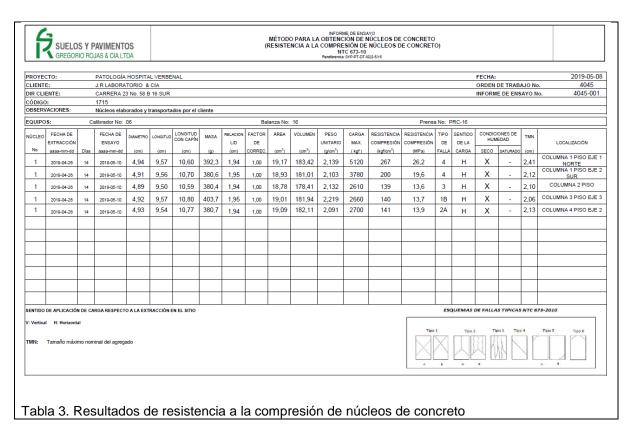
3.6 PRODUCTOS DE REPARACIÓN.

Las regatas, orificios que quedaron de la extracción de núcleos se repararon con productos comercializados por la firma Euclid Toxement de alto reconocimiento en esta industria, esto con el propósito de garantizar que las reparaciones realizadas tengan buen comportamiento estructural

Imagen 13. Producto EPOTOC 1-1, adhesivo epóxico para pegar concreto fresco a endurecido

Imagen 14. VERTICOAT No.1. mortero acrílico impermeable de un componente, se empleó en el sello de regatas

Imagen 15. . GRAUTOC, mortero con base en cementos especiales, arenas y aditivos, que controla cambios de volumen y contracciones, de gran fluidez, adherencia y altas resistencias mecánicas tempranas y finales. Empleado para sellar orificios por extracción de núcleos



3.7 ENSAYOS DE COMPRESIÓN DE NÚCLEOS

Se realizaron un total de cinco (5) ensayos de compresión axial de núcleos. Cada uno de los núcleos fue extraído cuidadosamente de los elementos estructurales en las zonas donde no existiera refuerzo de acuerdo con la información suministrada por las regatas y ferroscan

Posteriormente fueron llevados a un laboratorio acreditado para su adecuación y ensayo. Para el ensayo se utilizó una máquina Universal de control mecánico.

Los ensayos de compresión se adelantaron siguiendo la norma NTC 673-10. Los resultados obtenidos de los ensayos de extracción de núcleos realizados en columnas y cimentación se presentan en la Tabla 3.

Los resultados de resistencia tienden hacia un valor de 14MPa muy por debajo del valor de 21MPa que el Reglamento considera como concreto estructural, para fines de evaluación de vulnerabilidad se recomienda para sus análisis considerar la resistencia a compresión con un valor de 14MPa

3.8 ENSAYOS DE ESCLERÓMETROS

Este método establece el procedimiento para determinar el índice esclerométrico del concreto endurecido empleando un martillo de acero impulsado por un resorte. Con este procedimiento se puede:

- Evaluar la uniformidad del concreto in situ.
- Delinear zonas o regiones de concreto pobre o deteriorado en las estructuras.
- Detectar cambios en el tiempo de las características del concreto, tales como velocidad de endurecimiento del cemento, acción de temperaturas, etc., con lo que se obtiene información útil para determinar tiempos de desencofrar y descimbre.

El principio de funcionamiento consiste primordialmente en apoyar ligeramente la cabeza de la barra de percusión sobre la superficie a ensayar, se libera de su fijación y la barra se desliza, por si misma, fuera del armazón. Esta barra de percusión se presiona sobre el lugar de la superficie a ensayar, aumentando lentamente la presión hasta un poco antes de que desaparezca enteramente del armazón, momento en el cual se descarga el golpe del martillo. Después de esta percusión, el martillo rebota una cierta distancia indicada sobre la escala graduada. Esta lectura de la posición sobre la escala graduada representa la medida del retroceso en porcentaje con el avance del martillo. Este valor, leído en la gráfica, permite establecer la resistencia del concreto en función del ángulo de choque. A partir de los valores de resistencia a compresión obtenidos en el ensayo de núcleos se ajustó la curva de calibración del esclerómetro corrigiéndose así los valores de resistencia obtenidos inicialmente mediante este dispositivo.

Cabe señalar que el esclerómetro utilizado HT225 para estas pruebas fue calibrado, se anexa certificado de calibración.

3.9 RESULTADOS DE ESCLERÓMETRO

	Ensayos de i	nformación co	mplementaria				
	Índice d	e rebote (Escl	erómetro)			ĺ	
CÓDIGO		Versión	1	Actualización	20/05/2019	Página	1 de 1
Laboratorista	JF	LABORATORIO		Fecha	20/05/2019	ld Laboratorista	
Proyecto				CAPS VERBENA	AL .	•	•
Tipo de Exploración	Índice de Rebote	Esclerometro	Cantidad	l de ensayos			1
ZONAS PARA EXTRACCIÓN				EJE 2 SUR-PRIMER	PISO		
# Muestra	Tipo de Muestra sobre		índice	de rebote			Media
1	concreto liso			42			
2	concreto liso			38			
3	concreto liso			40			
4	concreto liso			34			
5	concreto liso			42			
6	concreto liso			34			
7	concreto liso						
8							
9	concreto liso			48			
							39
ZONAS PARA EXTRACCIÓN				EJE 1 NORTE PRIME	R PISO		
# Muestra	Tipo de Muestra sobre		índice	de rebote			Media
1	concreto liso			44			
2	concreto liso			42			
3	concreto liso			42			
4	concreto liso			42			
5	concreto liso			44			
6	concreto liso			44			
7	concreto liso			46			
8	concreto liso			40			
9	concreto liso			44			
							43

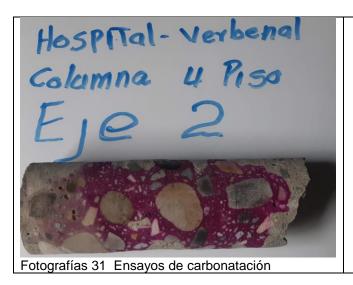
ZONAS PARA EXTRACCIÓN		SUBIDA ESCALERAS DEPRIMER A SEGUNDO PISO	
# Muestra	Tipo de Muestra sobre	índice de rebote	Media
1	concreto liso	42	
2	concreto liso	44	
3	concreto liso	44	
4	concreto liso	42	
5	concreto liso	44	
6	concreto liso	46	
7	concreto liso	40	
8	concreto liso	40	
9	concreto liso	40	
10	concreto liso	46	
11	concreto liso		
12	concreto liso		
			43
ZONAS PARA EXTRACCIÓN		PISO 3 EJE 2 NORTE CON EJE 3 OCCIDENTE	
# Muestra	Tipo de Muestra sobre	índice de rebote	Media
1	concreto liso	38	
2	concreto liso	40	
3	concreto liso	42	
4	concreto liso	48	
5	concreto liso	38	
6	concreto liso	38	
7	concreto liso	42	
8	concreto liso	40	
9	concreto liso	38	
10	concreto liso		
11	concreto liso		
12	concreto liso		
			40
ZONAS PARA EXTRACCIÓN		SUBIDA ESCALERAS TERRAZA-AZOTEA	
# Muestra	Tipo de Muestra sobre	índice de rebote	Media
1	concreto liso	40	
2	concreto liso	46	
3	concreto liso	40	
4	concreto liso	42	
5	concreto liso	46	
6	concreto liso	36	
7	concreto liso	40	
8	concreto liso	40	
9	concreto liso	42	
10	concreto liso		
11	concreto liso		
12	concreto liso		
			41

Tabla 4 Resultados del esclerometro

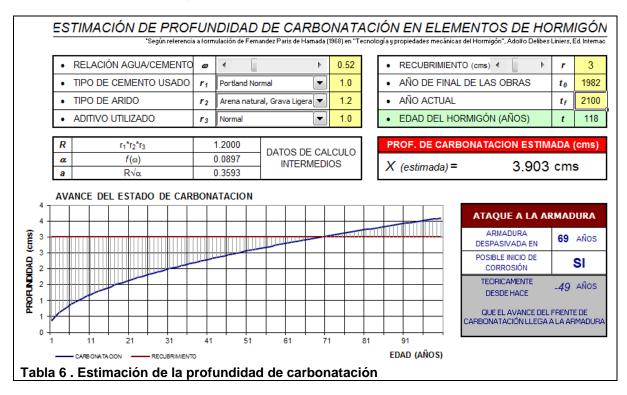
3.9.1 Tabla de calibración

	14 -56 dias						7 dias					
R		Wm			Wmin			Wm			Wmin	
	kgf/cm²	MPa	psi	kgf/cm²	MPa	psi	kgf/cm²	MPa	psi	kgf/cm²	MPa	psi
20	101	9.9	1440	54	5.3	770	121	11.9	1720	74	7.3	1050
21	113	11.1	1610	64	6.3	910	132	12.9	1880	83	8.1	1180
22	126	12.4	1790	75	7.4	1070	145	14.2	2060	94	9.2	1340
23	139	13.6	1980	86	8.4	1220	157	15.4	2230	104	10.2	1480
24	152	14.9	2160	98	9.6	1390	169	16.6	2400	115	11.3	1640
25	166	16.3	2360	110	10.8	1560	183	18.0	2600	127	12.5	1810
26	180	17.7	2560	122	12.0	1740	196	19.2	2790	138	13.5	1960
27	195	19.1	2770	135	13.2	1920	210	20.6	2990	150	14.7	2130
28	210	20.6	2990	149	14.6	2120	225	22.1	3200	164	16.1	2330
29	225	22.1	3200	163	16.0	2320	239	23.4	3400	177	17.4	2520
30	241	23.6	3430	178	17.5	2530	254	24.9	3610	191	18.7	2720
31	257	25.2	3660	193	18.9	2750	269	26.4	3830	205	20.1	2920
32	274	26.9	3900	209	20.5	2970	285	28.0	4050	220	21.6	3130
33	291	28.5	4140	225	22.1	3200	300	29.4	4270	234	23.0	3330
34	307	30.1	4370	240	23.5	3410	315	30.9	4480	248	24.3	3530
35	324	31.8	4610	256	25.1	3640	331	32.5	4710	263	25.8	3740
36	342	33.5	4860	273	26.8	3880	348	34.1	4950	279	27.4	3970
37	360	35.3	5120	290	28.4	4120	365	35.8	5190	295	28.9	4200
38	377	37.0	5360	307	30.1	4370	381	37.4	5420	311	30.5	4420
	395	38.7	5620	324	31.8	4610	398	39.0	5660	327	32.1	4650
39 40	413	40.5	5870	341	33.4	4850	416	40.8	5920	344	33.7	4890
			6150	359	35.2	5110	434	42.6	6170	361	35.4	5130
41	432	42.4	6400	377	37.0	5360	451	44.2	6410	378	37.1	5380
42	450	44.1		395	38.7	5520	470	46.1	6690	396	38.8	5630
43	469	46.0	6670	1			488		6940	414	40.6	5890
44	488	47.9	6940	414	40.6	5890		47.9	7210	432	42.4	6140
45	507	49.7	7210	432	42.4	6140 6410	507 526	49.7 51.6	7480	451	44.2	6410
46	526	51.6	7480	451	44.2	The second second					And the second	6690
47	546	53.5	7770	470	46.1	6690	546	53.5	7770	470	46.1	6960
48	565	55.4	8040	489	48.0	6960	565	55.4	8040	489	48.0 49.8	7230
49	584	57.3	8310	508	49.8	7230	584	57.3	8310	508		
50	604	59.2	8590	527	51.7	7500	604	59.2	8590	527	51.7	7500
51	623	61.1	8860	546	53.5	7770	623	61.1	8860	546	53.5	7770
52	643	63.1	9150	565	55.4	8040	643	63.1	9150	565	55.4	8040
53	663	65.0	9430	584	57.3	4310	663	65.0	9430	584	57.3	8310
54	683	67.0	9710	603	59.1	8580	683	67.0	9710	603	59.1	8580
55	703	68.9	10000	622	61.0	8850	703	68.9	10000	622	61.0	8850
ahl	a 5	Tabla	de c	alihra	ción							
<i>,</i>	α Э.	Table	i uc c	unbra	CIOII							

Se empleó el esclerómetro con fines de determinar densidad y uniformidad del concreto constitutivo de los elementos estructurales


En promedio se tiene índices de rebote entre 39 a 43 que se puede catalogar como un concreto de densidad y peso normal y en general uniforme.

3.10 ENSAYOS DE CARBONATACIÓN


Con el fin de investigar el estado actual del concreto se adelantaron ensayos de carbonatación. La carbonatación es la reducción de la alcalinidad normal del hormigón por efecto del CO2 que se difunde desde el ambiente que lo rodea. En presencia de humedad el CO2 reacciona con los álcalis neutralizándolos para formar carbonatos disminuyendo el Ph por debajo de 10. La prueba de carbonatación consiste en extraer núcleos de concreto y rociarles en una solución indicadora ácido – base (fenolftaleína en hidroalcohol 70% alcohol y 30% agua a 1%) y posteriormente medir las profundidades de carbonatación. Cuando las profundidades de carbonatación alcanzan las zonas donde se encuentra el acero de refuerzo del elemento estructural, se presenta riesgo de

corrosión en dicho elemento lo cual significa que la capacidad estructural puede verse afectada y se irá deteriorando de manera considerable con el paso del tiempo.

3.10.1 Estimación de la profundidad de carbonatación

Se practicó prueba de carbonatación a los cilindros extraídos, se identificó que el avance del estado de carbonatación es poco profundo, inferior a los recubrimientos de aceros, esto se debe a que los elementos estructurales se encuentran poco expuestos al intemperismo, y en el primero, segundo y tercer piso estos se encuentran pañetados, estucados y pintados con pintura epóxica, lo cual actúa protegiendo al concreto aún más de este ataque.

Realizando la simulación y estimando el avance de carbonatación para el año 2100 se esperaría una profundidad estimada de 3.9cm, para el recubrimiento promedio de armaduras de 3.0cm a borde externo, las armaduras se verían amenazadas por este fenómeno.

CONCLUSIONES

Con base en los análisis realizados se establecen las siguientes conclusiones:

- La resistencia de diseño a la compresión simple medida del concreto de conformidad a los resultados de núcleos reportados por el laboratorio es baja (14MPa), este valor de conformidad al Reglamento NSR10 no se considera un concreto estructural, en consecuencia se sugiere no tener en cuenta el aporte de resistencia de este concreto en la modelización de la vulnerabilidad sísmica.
- A la fecha de la auscultación de aceros con regatas, se evidencio que el refuerzo longitudinal y transversal aún no ha sido atacado por el fenómeno de carbonatación, puesto que no se visualizó corrosión de aceros. Se estimó que el concreto presenta frente de carbonatación inferior al recubrimiento de las armaduras, esto se debe a que los elementos estructurales han estado pañetados, estucados y pintados con pintura epóxica.
- El levantamiento de los diámetros y cantidad de armaduras de algunos elementos estructurales se realizó con base a las inspecciones con Ferroscan y regatas; las regatas además de permitir medir diámetros de barras, permitieron identificar si las armaduras habían iniciado un proceso de corrosión, para este estudio ninguno de los aceros investigados presentaron este fenomeno.
- En cuanto a la prueba de carbonatación, la estructura aun no presenta ataque del gas carbónico que comprometan las armaduras, las medidas en campo se observó que el estado de los aceros no presenta lesión de corrosión por este concepto.
- Del análisis de vulnerabilidad, los índices de sobreesfuerzo para flexión y compresión calculados como un índice de interacción de carga axial momento son superiores a 1.0, lo que indica que los elementos estructurales no cumplen y de conformidad al análisis de vulnerabilidad realizado se requiere demolición de las vigas que hacen parte del sistema de resistencia sísmica, esto con el propósito de que los índices de flexibilidad y sobre esfuerzos cumplan con lo prescrito por el Reglamento NSR10; de igual manera se garantiza así la ductilidad en los nodos de la estructura.
- Es de señalar, que para el caps Verbenal el procedimiento constructivo tiene cierto grado de complejidad por la cantidad de elementos tipo vigas, losas de entre piso, recalce de columnas, muros no estructurales, sistemas de redes secas y húmedas a demoler y reemplazar lo cual haría lento y costos este proceso.
- El refuerzo longitudinal y el refuerzo a cortante y torsión de los elementos estructurales columnas y vigas son barras corrugadas cumpliendo con lo prescrito con el Reglamento NSR10 para este tipo de grupo de uso.
- Los recubrimientos de los aceros cumplen de conformidad al Reglamento NSR10, entre 3.0 a 3.5 cm de recubrimiento a flejes.
- Por el estado actual de resistencias de concretos de elementos estructurales (14MPa), índices de flexibilidad y sobresfuerzos que no cumplen con normatividad entre otros factores, se hace necesario la intervención estructural urgente de este centro CAPS.

- Al realizar los trabajos de reforzamiento, es necesario acometer íntegramente y simultáneamente todos los frentes de reforzamiento, desde la cimentación, demolición de muros de fachada en toda la altura del edificio, para ser reemplazados en su mayoría por la nueva estructura que resistirá completamente las fuerzas sísmicas. Necesariamente estas intervenciones afectaran sustancialmente las instalaciones y los acabados existentes, este estudio recomienda efectuar una intervención total e integral para la modernización del edificio en el área de seguridad, comunicaciones, sistemas acordes a las necesidades actuales con tecnologías de punta en centros de salud, adecuándose todas las áreas y remodelando todas las redes eléctricas, hidráulicas, telefónicas, e incluyendo las redes de cableado estructurado, seguridad y prevención de incendios e inundaciones, conformándose un edificio inteligente.
- En nuestro concepto, una intervención limitada a construir el sistema estructural sismo resistente, y reponer los acabados afectados, es una inversión a corto plazo, que dejaría el edificio en condiciones seguras ante los eventos sísmicos, pero totalmente obsoleto para los requerimientos de seguridad y comunicaciones que actualmente son demandados para la operación eficiente de los centros modernos en el área salud, y creemos que la responsabilidad de la actual administración, debe también prever que en pocos años sería necesario volver a acometer las obras faltantes para modernizar el edificio, incurriéndose en sobrecostos que ya habían sido causados en la etapa de reforzamiento, y que son de un costo elevado.
- Recomendamos que se analicen estos criterios en aras que se tome la mejor decisión, en cuanto a reforzar el edificio o demolición y obra nueva, para lo cual estamos a disposición para cualquier concepto nuestro, y como complemento al estudio se ha presentado un presupuesto general, que incluye los costos del reforzamiento contra los costos de una obra nueva.

Ing. Rodolfo Felizzola C.